Введение

Все клетки должны иметь механизмы, позволяющие им контролировать состояние окружающей среды и отвечать на происходящие в ней изменения. В плазматических мембранах бактериальных, растительных и животных клеток содержится множество специализированных рецепторных молекул, которые, взаимодействуя с внеклеточными компонентами, вызывают специфические клеточные ответы. Одни рецепторы связывают питательные вещества или метаболиты, другие – гормоны или нейромедиаторы, третьи участвуют в межклеточном узнавании и адгезии или связывании клеток с нерастворимыми компонентами внеклеточной среды. Работа большинства рецепторных систем включает следующие стадии: 1) связывание лиганда или агониста с рецептором, расположенным на клеточной поверхности; 2) передачу внутрь клетки информации о связывании вещества с рецептором; 3) клеточный ответ, который в свою очередь делится ни первичный и вторичный. Эта бурно развивающаяся область исследований благодаря применению молекулярно-биологических подходов имеет блестящие перспективы. Становится ясно, что многочисленные, на первый взгляд не связанные друг с другом рецепторные системы имеют в своей основе много общего. Идентифицировано несколько семейств рецепторных белков с гомологичными первичными структурами; каждый белок связывается с характерным для него лигандом, что вызывает специфический клеточный ответ. Такие «суперсемейства» состоят из структурно родственных, но функционально различающихся белков. Это предполагает наличие неких модульных конструкций не только среди рецепторных белков в пределах данного семейства, но также среди других компонентов рецепторных систем, так что варианты одной и той же основной структуры рецепторного белка могут удовлетворять разнообразные потребности различных типов клеток, взаимодействующих с разными эффекторами. В частности, совершенно очевидна ключевая роль

Таблица 1. Некоторые суперсемейства структурно родственных рецепторов у эукариот

GTP‑связывающих белков и продуктов распада фосфатидилинозитола в самых разных системах.

Мы рассмотрим также тесно связанный с предыдущим вопрос о динамических свойствах самой клеточной поверхности, в частности поверхности животной клетки. Рассмотрим динамическое равновесие между плазматической мембраной животной клетки и пулом внутриклеточных мембранных везикул, называемых эндосомами или рецептосомами, которые отшнуровываются от плазматической мембраны и способны опять с ней сливаться. Все это является частью сложного механизма внутриклеточного мембранного транспорта, протекающего также с участием других клеточных мембранных органелл, например комплекса Гольджи и лизосом. При поступлении соответствующих сигналов специфические белки плазматической мембраны, инкапсулированные во внутреннем мембранном пуле, быстро высвобождаются и оказываются на поверхности мембраны в активной форме. Некоторые макромолекулы, например липопротеииы низкой плотности, поглощаются клетками путем захвата отшнуровывающихся от плазматической мембраны везикул в процессе, называемом рецепторзависимым эидоцитозом.


Кинетические параметры
Кинетическая кривая. Флуоресцентные красители обеспечивают флуоресценцию, прямо пропорциональную количеству ПЦР-продукта - репортерную флуоресценцию. Механизмы генерации репортерной флуоресценции различаются в зависимости от типа real-time PCR. Кинетическая кривая PCR в координатах "Уровень репортерной флуоресценции — цикл амплиф ...

Систематика
ЦарствоЖивотные Тип Хордовые ПодтипЧерепные Класс Млекопитающие Отряд Приматы Подотряд Антропоиды Секция Узконосые обезьяны НадсемействоГоминоиды Семейство Гоминиды Род Человек Вид Разумный Подвид Существующий Homo sapiens sapiens ...

Парадоксы искусственного интеллекта
25 ноября, традиционно в последнюю субботу месяца, состоялся очередной методологический семинар «Проблема обоснования знания», которым уже много лет руководит завкафедрой философии и методологии науки БашГУ доктор философских наук профессор Александр Федорович Кудряшев. На этот раз был заслушан доклад декана ФДО Академии экономической б ...