Материалы » Аэробные энергетические процессы » Взаимосвязь энергетических и конструктивных процессов в клетке

Взаимосвязь энергетических и конструктивных процессов в клетке
Страница 1

Взаимосвязь между реакциями, в результате которых энергия выделяется и может быть запасена в клетке, и теми, в которых она затрачивается на построение веществ клетки, удобнее всего рассмотреть на примере метаболизма глюкозы, чаще всего выступающих в качестве «энергодающих» субстратов. При этом нужно иметь в виду два обстоятельства. Первое: в клетке на самом деле не существует резкого разграничения энергетических и конструктивных процессов. Как правило, в результате реакций катаболизма образуются такие промежуточные продукты, которые могут «подхватываться» ферментами анаболизма и использоваться для построения веществ клетки. Второе: в живой клетке широко применяется принцип организации биохимических процессов в виде метаболических циклов, когда исходный и конечный компоненты в реакции идентичны и циклы могут функционировать неопределенно длительное время при условии притока субстратов и оттока продуктов.

Рассмотрим пример, когда основным источником энергии и углерода служит глюкоза или содержащие глюкозу полисахариды. Последовательность протекающих реакций изображена на рис. 26.

Утилизация полисахаридов начинается с их гидролиза. Гидролиз с участием амилаз приводит к образованию олигосахаридов и свободных Сахаров, которые с помощью фосфорилаз превращаются в фосфорные эфиры Сахаров. В случае глюкозы это чаще всего глюкозо‑6‑фосфат. Гидролиз с участием фосфорилаз сразу приводит к образованию фосфосахаров. Обратная реакция – синтез полисахаридов – типичный анаболический процесс, протекающий с затратой энергии, смысл которого либо в образовании запасных веществ, либо в синтезе структурных полисахаридов. В этих случаях промежуточно образуются производные Сахаров и нуклеотидов. Фосфорилирование свободной глюкозы катализируется гексокиназой. Этот процесс – первый этап гликолиза, где в результате через промежуточный синтез триозофосфатов образуется пируват. Он же получается и при функционировании пентозофосфатного цикла, или пентозофосфатного шунта, биосинтетическое значение которого состоит, в частности, в синтезе пентоз. Дальнейшие превращения пирувата приводят либо к синтезу аланина, либо к образованию ацетил, «питающего» цикл трикарбоновых кислот, значение которого рассмотрим подробнее чуть позже. При наличии готового аланина из него под действием соответствующей дезаминазы вновь образуется пируват, вступающий в катаболические процессы. Ацетил-СоА может вступать на путь синтеза жирных кислот, приводящий, в конечном счете, к образованию липидов. В свою очередь, катаболизм липидов сопровождается их гидролизом с освобождением жирных кислот, которые далее деградируют до ацетил-СоА. Таким образом, ацетил-СоА находится в центре как катаболических, так и анаболических превращений многих субстратов, в частности углеводов и липидов. Для завершения процесса окисления жирных кислот ацетильные остатки, образующиеся в результате их р-окисления, необходимо также окислить. Это осуществляется в ходе ЦТК.

Представления о цикле трикарбоновых кислот сформулированы X. Кребсом в 1937 г. ЦТК выполняет две важные задачи: 1) полное окисление многих субстратов, что обеспечивает клетку энергией, и 2) обеспечение промежуточных продуктов для синтеза ряда клеточных компонентов, в частности аминокислот – аспарагиновой и глутаминовой кислот, получаемых прямым аминированием кетокислот: окса-лоацетата и 2‑оксоглутарата. Из них путем переаминирования могут быть получены многие другие аминокислоты, и в конечном счете – белки.

Возвращаясь к невозможности строгого разделения конструктивных и энергетических процессов, отметим, что относительные вклады гликолиза и ЦТК в энергетику и биосинтезы зависят от скорости роста организма. Изотопные исследования показали, что при высокой скорости роста Escherichia coli на среде с глюкозой ЦТК обеспечивает биосинтезы, тогда как гликолиз выполняет чисто энергетическую роль. При замедлении скорости роста их роли меняются: основная энергетическая функция принадлежит ЦТК, а гликолиз используется для гликогенеза, обеспечивая синтез и запасание полисахаридов в клетке. Такие пути метаболизма, играющие как энергетическую, так и конструктивную роль, принято называть амфиболическими.

Страницы: 1 2


Рододендрон крупнейший (Rh. maximum L.)
Родина − Северная Америка. Эндем, древний вид. Распространен в Канаде и на востоке Северной Америки от Новой Шотландии и Онтарио до Огайо, Алабамы, Джорджии, в Аппалачских горах (до 900 м абс. Высоты). Растет на побережье и в горах до 1200 м над уровнем моря, часто сплошными зарослями, а также в подлеске сырых горных смешанных лес ...

Анализ роли эмпиризма и рационализма в истории науки
Познавательная деятельность человека сформировалась задолго до возникновения науки как специфического способа духовно-практического освоения действительности. Когнитивный элемент органически вплетен и во все вненаучные способы духовной деятельности человека. Наряду с научно-теоретическим можно также говорить о художественном, религиозно ...

Сюрпризы митохондриального генома
Несмотря на то, что в геномах митохондрий млекопитающих и дрожжей содержится приблизительно одинаковое количество генов, размеры дрожжевого генома в 4-5 раз больше — около 80 тыс. пар нуклеотидов. Хотя кодирующие последовательности мтДНК дрожжей высоко гомологичны соответствующим последовательностям у человека, дрожжевые мРНК дополнител ...