Материалы » Происхождение жизни на Земле » Современные представления о происхождении жизни на Земле

Современные представления о происхождении жизни на Земле
Страница 3

Некоторые ученые считают, что жизнь возникла не на Земле, а была занесена на нее из космического пространства в виде спор микроорганизмов размерами 0,2-0,6 мкм. В составе планетарных и диффузных газопылевых туманностей и глобул обнаружены сложные органические соединения. При прохождении Солнечной системы в спиральных рукавах на поверхность Земли может выпадать до 1014 органических молекул на м2.

В пользу вышеупомянутой гипотезы свидетельствуют: универсальность генетического кода всех земных организмов и важность роли молибдена в живой клетке, более редкого на Земле, чем хром и никель, которые могли бы выполнять те же функции. Устойчивые к ультрафиолетовому облучению и космической радиации споры действительно могли бы путешествовать между звезд, но для того, чтобы за миллиард лет Земля получила 1 спору, все остальные звезды Галактики должны иметь планеты, выбрасывающие в тот же срок в космос по 1 т. спор.

В качестве места возникновения и развития жизни предполагались кометы и каменные метеориты - углистые хондриты, содержащие сложные органические вещества, в том числе аминокислоты (в составе метеорита Мерчисон было обнаружено 18 разновидностей аминокислот), не встречающиеся на Земле. Многочисленные данные свидетельствуют об изобилии органических соединений на поверхности Земли в эпоху ее формирования [2. С. 79].

Бактерии способны размножаться в экстремальных условиях температур от – 25њ С до 300њ С при давлении до 1,3× 108 Па. Они сохраняют жизнеспособность в виде спор при температурах от – 240њ С до 600њ С и давлении от 10-4-10-6 Па до 2× 109 Па, облучению ультрафиолетовым излучением интенсивностью до 5× 104 эрг/мм2 и жесткой радиации мощностью до 104 Гр. Колонии бактерий (E. coli) на борту АМС "Сервейер" смогли выжить в течение 1 года на поверхности Луны, и свыше 5 лет находившихся на открытой панели ИСЗ. В ископаемых льдах Арктики и Антарктиды обнаружены споры микроорганизмов (до 107 клеток на грамм), находящихся в состоянии анабиоза от 20-40 тысяч лет до 8 миллионов лет! Некоторые ученые полагают, что у многих обнаруженных популяций микроорганизмов в условиях вечной мерзлоты метаболизм крайне замедляется, но не останавливается. Такая жизнеспособность обусловлена неразрывностью связи популяций организмов со средой обитания.

Отдельные группы земных микроорганизмов, примитивных грибов, дрожжей и водорослей могут не только выжить, но и размножаться в условиях, существующих в криосфере и на поверхности Марса или в океанах Европы. И все же, несмотря на космическую распространенность органических веществ, гипотеза панспермии до сих пор не получила материального подтверждения, хотя массовая печать неоднократно в форме сенсаций сообщала об обнаружении в метеоритах окаменелостей микроорганизмов. Главным недостатком этой гипотезы является то, что перенос места возникновения земной жизни с поверхности Земли в глубины Вселенной не решает вопроса о происхождении жизни из неживой материи.

Концепция стационарного состояния жизни. По мнению В.И. Вернадского, необходимо говорить об извечности жизни и проявлений её организмов, как мы говорим об извечности материального субстрата небесных тел, их тепловых, электрических, магнитных параметров и их проявлений. Далек от научных исканий вопрос о начале жизни, как и вопрос о начале материи, теплоты, электроэнергии, магнетизма, движения. Все живое вышло от живого (принцип Реди). Примитивные одноклеточные организмы могли появиться лишь в биосфере Земли, а шире, в биосфере Вселенной. По мнению Вернадского, естественные науки построены на предположении, что жизнь с её особыми свойствами не играет никакой роли в жизни Вселенной. Но биосферу необходимо брать как целое, как единый живой космический организм (тогда и отпадает вопрос о начале живого, о скачке от неживого к живому) [8. С. 12].

Гипотеза «голобиоза» касается прообраза доклеточного предка и его способностей. Есть разные формы доклеточного предка – «биоид», «биомонада», «микросфера». Согласно биохимику П. Деккера, структурную базу «биоида» составляют «жизнеподобные» неравновесные диссипативные (от лат. «dissipate») структуры, т.е. открытые микросистемы с ферментативным аппаратом, катализирующим метаболизм биоида. Эта гипотеза трактует активность доклеточного предка в обменно-метаболическом духе. В рамках гипотезы «голобиоза» конструировали биохимики С.Фокс и К.Дозе свои биополимеры, способные к метаболизму – комплексному белковому синтезу. Основной недостаток данной гипотезы – отсутствие генетической системы при таком синтезе. Отсюда - следует отдать предпочтение «молекулярному прародителю» всякого живого, а не первичной протоклеточной структуре.

Страницы: 1 2 3 4 5 6 7


Пентозофосфатный путь. Механизмы регуляции цикла. Энергетическая эффективность процесса, значение. Связь с другими процессами
В клетках растений наряду с гликолизом и циклом Кребса, являющимся главным поставщиком свободной энергии в процессах дыхания, существует и другой важнейший способ катаболизма гексоз — пентозофосфатный путь (ПФП), в котором участвуют пятиуглеродные сахара (пентозы). Этот путь дыхания известен также как гексозомонофосфатный цикл, пентозны ...

Строение и хим состав ДНК
ДНК сост. из азотистых оснований: пуриновые (А, Г), перемединовые (Т, Ц). Нуклеотиды отлич-ся др. от друга только азотистыми основаниями. Соединяются между собой фосфорной связью с помощью фосфатов, образуя полинуклеотидную цепь. Нуклеотиды соединяются между собой в длинные цепи. Остов такой цепи образует остатки сахара и Н3РО4. Цепь ДН ...

Управление ростом аксона
Аксоны нервных клеток могут достигать 1 метра и более в длину, образуя синапсы в определенном месте на строго определенной клетке в области, где имеется большое количество других потенциальных клеток-мишеней. Две основные теории, касающиеся того, каким образом устанавливается такая специфичность в синаптических связях во время развития, ...