Микро и макроэволюцияСтраница 1
Эволюция биомассы на Земле рисуется следующим образом. Разделим существующие организмы на группы:
1) водоросли,
2) морские животные,
3) наземные растения,
4) наземные животные.
Водоросли появились в катархее, и в течение архея и протерозоя их биомасса нарастала до величины порядка сегодняшней, т.е. до 1 млрд. т. Морские животные появились в среднем протерозое, их биомасса очень медленно росла до венда, а в течение кембрия, вероятно, быстро выросла до величины порядка сегодняшней, т.е. до 20-30 млрд. т. Наземные растения появились, возможно, еще в ордовике или даже в кембрии, однако их биомасса стала ощутимой лишь в силуре, а за девон и карбон быстро выросла до колоссальных размеров, порядка нескольких триллионов тонн; в перми она, возможно, даже несколько уменьшилась и приблизилась к современному уровню. Наконец, наземные животные появились только в девоне, их биомасса достигла современной величины, вероятно, еще в палеозое.
Что же касается изменений со временем разнообразия форм организмов, то здесь имеются довольно надежные фактические данные. Они показывают, что в разнообразии форм монотонного нарастания со временем не было, так как при появлении новых форм некоторые из старых отмирали. Так, в кембрии появилось 28 классов животных, в ордовике еще 14 (но часть классов уже отмерла), в силуре еще 3 (но 2 отмерли). Начало верхнего палеозоя ознаменовалось новой вспышкой формообразования - в девоне появилось 9 новых классов (и их число достигло фанерозойского максимума), а карбоне еще 5 (но 8 отмерло), в перми новых классов не появилось (но 4 отмерли). К триасу 3 класса отмерли, но 1 появился (и число классов достигло фанерозойского минимума, если не считать кембрия), в юре и мелу был небольшой прирост. В кайнозое изменений не произошло. Аналогичны данные и по классам растений; здесь также разделяются нижний палеозой, верхний палеозой, мезозой и кайнозой, лишь отмирания классов почти не происходило [7. С. 197].
Жизнь на Земле зародилась, когда на дне мелких теплых морей катархея, богатых сложными органическими веществами до аминокислот включительно, начали образовываться двойные сахаро-фосфатные спиральные нити высокополимерных нуклеиновых кислот с закрепленными на них последовательностями оснований (служащими «кодами» для синтеза белков), способные при некоторых условиях разворачиваться в одинарные спирали и синтезировать на каждой из них недостающую вторую спираль, т.е. порождать пару себе подобных (передавать им информацию о процедурах синтеза белков, закодированных последовательностями оснований). Такие полимеры, которые синтезировали белки, обеспечивающие им достаточно длительное самосохранение, по-видимому, уже можно считать первичными организмами.
Эти первичные микроорганизмы, возможно, питались имевшейся органикой небиологического происхождения, осуществляя, например, бескислородное разложение белков и аминокислот - гниение или углеродов - брожение (анологично питаются современные сапрофиты, поглощая через свои стенки клеток органику биологического происхождения: например, дрожжи при отсутствии кислорода сбраживают глюкозу до спирта и углекислоты). Развитие этих организмов, вероятно, исключило условия для дальнейшего самозарождения жизни, и с тех пор все живое появляется уже только от живого. В результате эволюции микроорганизмов (вынуждаемой нехваткой подходившей для пищи органики) у них появилась способность синтезировать необходимые для самосохранения органические молекулы из неорганических. Наиболее эффективным способом оказался фотосинтез - продуцирование органического вещества из углекислоты и воды под действием солнечного света (энергия света, поглощаемого пигментами, прежде всего зеленым хлорофиллом, расходуется на расщепление молекул воды, кислород выделяется в атмосферу, а водород вместе с углекислотой идет на образование первичного органического продукта - фосфоглицериновой кислоты).
Первыми фотосинтезирующими растениями были, по-видимому, микроскопические синезеленые водоросли цианофиты, у которых хлорофилл рассеян в виде мелких зерен по плазме клеток (у более развитых растений он сосредоточен в специальных тельцах - хлоропластах), и имеется еще синий пигмент фикоцианин. Эти водоросли похожи на бактерий тем, что в их клетках трудно различить ядра, и размножаются они только делением.
Наиболее древние остатки жизнедеятельности организмов, найденные в Трансваале в породах серии Свазиленд возрастом 3.1-3.4 млрд. лет, были тщательно изучены Э. Баргхорном и Дж. Шопфом. Они представляют собой микроскопические изолированные палочки длиной 0.45-0.7 мк. и диаметром 0.18-0.32 мк., имеющие двухслойные оболочки толщиной 0.045 мк.; там же обнаружены нитеподобные образования, а также микроскопические шаровидные, дисковидные и многоугольные оболочки одноклеточных водорослей акритархи. Почти столь же древними (более 2.9 млрд. лет) являются обызвествленные продукты жизнедеятельности цианофитов и бактерий - прикрепленные ко дну столбчатые строматолиты и неприкрепленные округлые онколиты, найденные в известковых прослоях зеленокаменных пород системы Булавайо в Южной Родезии и описанные А. Мак-Грегором еще в 1940 г. [7. С. 204]
Какие неорганические вещества принимают участие в функционировании живых
организмов. Их роль. Вода, ее роль в биофункциях
Такие вещества как песок, глина, различные минералы, вода, оксиды углерода, угольная кислота, ее соли и другие, встречающиеся в «неживой природе», получили название неорганических или минеральных веществ.
Примерно из ста химических элементов, встречающихся в земной коре, для жизни необходимы только шестнадцать, причем четыре из них — в ...
Биоритмы и работоспособность
Основным суточным циклом, базой и фоном для протекания всех ритмов организма человека является чередование сна и бодрствования. Эти два процесса неразрывно связаны между собой и являются главным условием организации режима деятельности и отдыха. Бодрствование выступает основой активной и осознанной деятельности человека и занимает приме ...
Выводы
1. Активность карбоксипептидазы Н у самок крыс зависит от стадии эстрального цикла в гипофизе, гипоталамусе, стриатуме и яичниках. Активность ФМСФ-ингибируемой карбоксипептидазы определяется стадией эстрального цикла только в яичниках. Зависимости активности КПМ от стадий полового цикла в гипоталамусе и стриатуме не обнаружено.
2. Введ ...