Материалы » Пространственная симметрия у живых организмов » Методологическая роль симметрии в науке. Симметрия у живых организмов

Методологическая роль симметрии в науке. Симметрия у живых организмов
Страница 1

Использование принципа симметрии на границе 19-20 вв. позволило получить выдающиеся достижения в различных областях науки. Немецкий математик Ф. Клейн, рассмотревший различные геометрии как категории инвариантов определенных групп преобразований внес существенный вклад в формирование современного понятия симметрии, тесно связанного с инвариантностью и теорией групп. Русские кристаллографы А.В. Гадолин и Е.С. Федоров создали учение о пространственной симметрии. В физике теоремы Э. Нетер позволили связать пространственно-временную симметрию (инвариантность) уравнений физики с сохранением фундаментальных величин - энергии, импульса, количества движения. Новые аспекты физического содержания симметрии в рамках теоретико-группового подхода были вскрыты специальной (СТО) и общей (ОТО) теориями относительности, а также квантовой механикой и квантовой теорией поля. Помимо получения ряда выдающихся конкретных результатов в физике, концепция симметрии привела к перевороту в философских основаниях физики, изменив представление о том, что следует считать исходными законами физики.

В наши дни идея симметрии выполняет важную методологическую роль не только в математике и физике, в технике и искусстве, но начинает проникать в химию и биологию.

Несомненно, что использование методов симметрии неоценимо для познания биологических явлений, для нахождения сути и простоты в этом сложнейшем классе природных явлений. Существует мнение, что использование симметрии и теории групп в биологии позволит получить даже более выдающиеся результаты, чем в физике. К сожалению, симметрийный подход к биологическим объектам как методологический прием стал развиваться только в последние десятилетия 20 века. Наиболее глубокое и обобщающее развитие идей биосимметрии и исчерпывающее изложение общих задач и следствий дано в работах Ю.А. Урманцева. Во многом благодаря работам Урманцева в биологии сформировалось новое научное направление - биосимметрика, изучающая вопросы симметрии, их нарушение, симметризацию и десимметризацию в живой природе, биологические инварианты, биологические законы сохранения и соответствующие группы преобразований. Ю.А. Урманцев внес огромный вклад в развитие почти всех сторон биосимметрики, особенно в создание теорий дисфакторов и биологической изомерии, на основе которых им была развита универсальная ОТС. В объяснении природы левого и правого в симметрии был сделан крупный шаг с введением понятия диссимметрирующих факторов (сокращенно называемых дисфакторами), т.е. таких отличительных особенностей и признаков у объектов, которые делают их правыми или левыми Положение теории биологической изомерии Ю.А. Урманцева и его ОТС принципиально важны для правильного понимания деятельности живых систем. Значительный вклад в биосимметрику сделал А.П. Дубров, разработавший важное направление в биологии и медицине - функциональную биосимметрику. Функциональная биосимметрика обосновывает вариабельность медико-биологических свойств, параметров и показателей жизнедеятельности человека, животных, растений и микроорганизмов. Следует отметить, что интерес к симметрии среди ученых, занимающихся проблемами организации биосистем, неуклонно возрастает. В последние годы появился ряд работ, посвященных общим проблемам симметрии живых систем и выявлению симметрии в конкретных биообъектах. В некоторых из этих исследований представлена роль особых чисел и безразмерных отношений в организации живого и симметрийных преобразованиях живых систем.

Страницы: 1 2 3 4


Ареал, местообитание
Волнистый попугай относится к отряду попугаев Psittaciformes. Он заселяет всю Австралию, избегая только замкнутых лесных массивов на северо-востоке и юго-западе континента, прибрежных областей и полуострова Cape York.[2] Это наиболее часто встречающийся австралийский вид попугая. В Ареал распространения входят полупустыни, степи, местн ...

Пищеварительная система
Происходит дифференцировка пищеварительного тракта на отделы, однако, не полная. Возрастает длина кишечника; сформированы пищеварительные железы: печень, поджелудочная железа. Происходит дифференцировка пищеварительного тракта на отделы, однако, не полная. Возрастает длина кишечника; сформированы пищеварительные железы: печень, поджелу ...

Активность ФМСФ-ингибируемой КП в тканях крыс при введении галоперидола. Влияние однократного введения галоперидола на активность ФМСФ-ингибируемой КП в тканях крыс.
Введение галоперидола не влияло на активность ФМСФ-ингибируемой КП только в семенниках (рис. 4). В гипофизе, гипоталамусе и мозжечке активность понижалась через 4 часа после инъекции на 26, 24 и 14% соответственно относительно контроля. Повышение активности ФМСФ-ингибируемой КП через 0,5 часа на 29% и понижение через 4 и 72 часа на 20 ...