Упаковка ДНК в клетках эукариот
Включает в себяассоциацию сверхспирализованной ДНК с различными белками (гистонами –основные белки, 11,3-21 кДа, внутри бусины Н2А, Н2В, Н3 и Н4 ), в результате которой образуется комплекс, называемый хроматином. Хроматин в свою очередь образует соленоидоподобную структуру, с которой связываются хромосомные структурные белки (они образуют каркас на котором идет окончательная конденсация хроматина, этот белковый остов не разрушается даже после удаления всех гистонов); получившийся в результате комплекс – хромосома.
Хроматин состоит из двуцепочечной ДНК, которая обвивается вокруг гранул, состоящих из гистонов. Такая структура похожая на бусы – хроматиновое волокно. Каждая бусина – это нуклеосома (диаметр ее около 10 нм, впервые установил ее структуру Клуг с сотрудниками). Нуклеосомы соединяются с помощью гистона Н1, ДНК этих связующих участков – соединительная (или линкерная) ДНК. Н1 не участвует в стабилизации структуры хромосомы, а скорее играет роль в регуляции транскрипционной активности хроматина. В результате конденсации в хроматин продольные размеры ДНК уменьшаются в 5-6 раз.
Топоизомеразы. Переходы в молекулах ДНК, связанные с изменением степени сверхспирализации (топологические изомеры ДНК), катализируются ферментами топоизомеразами. Одни топоизомеразы вызывают релаксацию сверхспиральной ДНК, а другие напротив, приводят к появлению в ней сверх витков. Так например, ДНК-гираза E. Coli переводит двуцепочечную кольцевую ДНК в состояние с отрицательной сверхспирализацией. Это необходимо для снятия положительных сверхвитков, возникающих при репликации (и транскрипции) из-за раскручивания двойной спирали ДНК. (см. действие антибиотиков).
Гены. Структурный ген – это наименьший отрезок ДНК или РНК, кодирующий полную аминокислотную последовательность какого-либо белка. В клетке высших организмов может содержаться до 100 000 генов (по последним данным их существенно меньше). Однако ДНК в клетке столько, что ее хватило бы на образование в 10 раз большего числа генов. «лишняя ДНК» - в составе интронов, спейсерной ДНК, например. В вирусах может быть лишь 5-6 генов, а геном прокариот составляет примерно 0,1% от генома высших.
Хромосома прокариот. Структурные гены подразделяются на три основных типа: независимые гены (транскрибируются без каких-либо механизмов регуляции транскрипционной активности), транскрипционные единицы (транскриптоны – группа следующих друг за другом генов, транскрибируемых совместно, обычно это гены белков или н.к., связанных между собой в функциональном отношении), и опрероны (группа следующих подряд структурных генов, находящихся под контролем участка ДНК - оператора). Кроме того в прокариотической клетке могут находиться более мелкие реплицирующиеся единицы – плазмиды (кольцевые молекулы ДНК, в них есть участки способные к перемещению – транспозоны, они часто содержат гены резистентности к антибиотикам, перемещаясь из одной клетки в другую в процессе коньюгации, гены резистентности быстро распространяются в популяции бактерий).
Клетки эукариот используют в качестве генетического материала лишь двуцепочечную ДНК. Структурные гены в них подразделяются на независимые гены (их транскрипция не связана с транскрипцией других генов, их активность регулируется, например гормонами), повторяющиеся гены (например, ген рибосомной 5S-РНК повторятся много сотен раз, причем повторы следуют вплотную друг за другом) и кластерные гены (это локализованные в определенных участках – локусах – хромосомы группы различных генов с родственными функциями, иногда также в виде повторов, например, кластер гистоновых генов в геноме человека повторяются 10-20 раз). В кодирующие последовательности этих генов могут вклиниваться некодирующие – интроны (разбивают кодирующую – экспрессируемую часть гена – следовательно для полученной с этой матрицы мРНК нужен сплайсинг). Кроме того, между генами могут находиться участки ДНК с большим числом повторов (сателлитной ДНК – в теломерных и центромерных участках хромосомы – функция этой ДНК пока неясна, вероятно структурная) и спейсерной ДНК (располагается между генами), транскрибируемой и нетранскрибируемой.
Показатели
гидрокарбонатных ионов в капиллярной крови пловцов до, во время физической
нагрузки и в периоде раннего восстановления
До физической работы в капиллярной крови спортсменов выявлено незначительное повышение содержания гидрокарбонатных ионов по сравнению с физиологической нормой, что также указывает на высокий уровень развития щелочных резервов организма.
При выполнении теста в крови пловцов обнаруживается снижение уровня НСО3-. Вероятно, это связано с в ...
История развития анатомии (научная анатомия – после
XVI века).
Анатомия – наука о происхождении и развитии, формах и строении человеческого организма. Слово «анатомия» происходит от греческого «анатемно» - рассекать, расчленять.
Это название определяется тем обстоятельством, что первоначальным и основным методом, с помощью которого анатомия добывала фактический материал, относящийся к внутреннему ...
Принципы клонирования
Чтобы понять, как использовались концепции трансдукции при разработке методов получения рекомбинантных ДНК, нам следует ознакомиться с тем, что представляет собой клонирование. Клон вируса или клеток–это некая популяция, каждый член которой ведет происхождение от одного репродуцирующегося вириона или от одной клетки соответственно. Все ...