Флюориметрические методы анализа
Наиб. распространение получил анализ, основанный на фотолюминесценции исследуемого в-ва, возбуждаемой УФ излучением. Источниками последнего служат кварцевые газоразрядные ртутные или ксеноновые лампы и УФ лазеры. Pегистрируют люминесценцию визуально, фотографически или фотоэлектрически с помощью спектрографов, фотометров и спектрофотометров Л. а. подразделяют на качественный и количественный. Качеств Л. а. проводят по спектрам люминесценции. Его используют, напр., для обнаружения битумов в породах, следов люминесцирующих орг. и неорг. в-в в разл. объектах. Разновидность качеств. Л. а. - сортовой анализ, к-рый позволяет обнаруживать невидимые при обычном освещении различия в исследуемых объектах и используется для установления сортности и качества стекол, семян, с. - х. продукции, для определения минералов в породах, поверхностных и сквозных дефектов, выявления подделок, в криминалистике и т.д. Количеств Л. а. основан на зависимости интенсивности люминесценции от кол-ва люминесцирующего в-ва. Различают флуоресцентный, фосфоресцентный и хемилюминесцентный анализы. Флуоресцентный анализ основан на образовании люминесцирующих комплексных соед. элементов с орг. реагентами, напр. гидроксипроизводными флавона (морин, кверцетин), производными тригидроксифлуорона и гидроксиантрахинона, 8-оксихинолином, родаминами и др. Этот метод мало селективен, большинство реагентов - групповые, лишь люмогаллион специфичен для определения Ga и люмомагнезон - Mg. Для увеличения селективности используют экстракционно-флуоресцентный анализ - предварит. разделение анализируемой смеси методом экстракции, а также охлаждение р-ров до азотных и гелиевых т-р. В последнем случае может возникнуть фосфоресценция. Фосфоресцентный анализ обладает большой селективностью, т.к лишь немногие катионы образуют с орг. реагентами фосфоресцирующие комплексы, сами же реагенты не фосфоресцируют.д.ля регистрации спектров и интенсивности фосфоресценции используют фосфороскоп; при этом флуоресценция не регистрируется. Хемилюминесцентный анализ основан на свечении, возникающем в результате окислит. - восстановит. р-ций орг. в-в, напр. люминола, люцигенина и др., с катионами переходных металлов, напр. Fe (III), Co (II), Cu (II), Ni (II), Mn (II) и др.; концентрацию последних определяют по изменению интенсивности свечения. Предел обнаружения 5.10-7%. По собственной люминесценции определяют U, лантаноиды и нек-рые переходные элементы с большой селективностью, т.к их спектры в ряде случаев характеризуются структурой. Пределы обнаружения U в водах и геол. объектах при применении кристаллофосфоров 5.10-7 - 1.10-8%; РЗЭ при использовании орг. реагентов 103 - 10-4%, в кристаллофосфорах 10-5-10-6%; переходных элементов (в т. ч. и платиновых) в кристаллофосфорах 10-5-10-6%. Ртутеподобные ионы (Tl+, Pb2+, Bi3+, Те4+, As3+, Sb3+) можно определять по люминесценции замороженных р-ров их солей или в кристаллофосфорах с пределом обнаружения 10-4-10-7%. Применение лазеров позволяет снизить пределы обнаружения нек-рых элементов до 10-13%.Л. а. орг. соед. затруднен, т.к их спектры люминесценции, как правило, неспецифичны. Однако предложены методы количеств. определения порфиринов, витаминов, антибиотиков, хлорофилла и др. в-в, в спектрах к-рых имеются характеристичные полосы. При использовании лазеров пределы обнаружения достигают 10-7-10-11%. Ароматич. соед. в замороженных р-рах алифатич. углеводородов при т-рах 77 К дают характерные для каждого соед. квазилинейчатые спектры люминесценции (эффект Шпольского). Этот метод используют для определения полициклич. ароматич. углеводородов в экстрактах растений, почв, продуктов питания, горных пород и т.д. с пределом обнаружения 10-7-10-8%, а также для определения бензола, его гомологов и производных, ароматич. аминокислот при т-рах жидкого воздуха, азота, гелия в водно-солевой матрице с пределом обнаружения 10-4-10-6%.Л. а. используют в иммунохим. анализе для определения антител, гормонов, лек. препаратов, вирусных и бактериальных антигенов по концентрации комплекса антиген - антитело. При этом в иммунном флуоресцентном анализе к антителу непосредственно присоединяют флуоресцирующие в-ва, напр. РЗЭ, флуоресцирующие красители (чувствительность метода 10-14 моль/л), а в иммуноферментном анализе к антителу присоединяют фермент и в результате ферментативной р-ции, сопровождаемой биолюминесценцией, определяют ферментативную активность.
Спорообразование
Бактерии рода Bacillis Clostnidium и Pesuifotoma Culum так же как и отдельные виды кокки и спириллы способны образовать споры (эндеспоры) – тельца сферической или устойчивые к воздействию неблагоприятных факторов. Споры четко преломляют споры и четко видны в световом микроскопе. Как правило, внутри бактериальной клетки образуется только ...
От явления - к сущности
На первый взгляд может показаться, что моя работа относится к невероятным. Но иногда самое невероятное оказывается самым логичным. Как говорил французский философ Декарт /1596 - 1650 г./ “ .Чтобы найти истину каждый должен хоть раз в жизни освободиться от усвоенных им представлений и совершенно заново построить систему своих взглядов”. ...
Общие принципы хроматографии, классификация
хроматографических методов
Всем хроматографическим методам присущи некоторые общие характеристики, позволяющие ниже изложить элементы их обобщенной теории. Однако сначала рассмотрим специфические особенности различных вариантов хроматографического фракционирования. Это, с одной стороны, позволит за теоретическими рассуждениями все время видеть реальные черты хром ...