Теория Брэгга-Вильямса для неидеальных смесей. Свободная энергия смешения
Модель Брэгга-Вильямса иногда называют также теорией регулярных растворов. Она описывает жидкие смеси на основе простейших подходов статистической механики и не включает никаких сложных математических методов, кроме простой комбинаторики. Несмотря на свою простоту теория дает удивительно хорошее качественное описание множества очень сложных процессов в жидких смесях. Эта модель лежит в основе теории растворов полимеров Флори-Хаггинса. Некоторые концепции, например параметр ч, введенный в модели Брэгга-Вильямса, используются в различных ситуациях, поэтому важно знать их происхождение.
Модель Брэгга-Вильямса основана на решеточной модели, в которой каждая позиция решетки может разместить одну молекулу независимо от ее типа и размера. В таком случае число соседей всегда постоянно, если считать, что все места в решетке заняты и что объем не меняется при смешении. Основные постулаты модели сводятся к следующему.
1. Компоненты смеси смешиваются хаотически.
2. Число соседних молекул постоянно.
3. Взаимодействие ограничивается ближайшими соседями.
Из этих постулатов следует, что энергия смешения будет ненулевой АЕ = 0, если мы предположим, что энтропия смешения идеальна AS = Аидеал. Это приближение среднего поля обсуждается ниже.
Рассмотрим смешение двух веществ А и В.
Рис. 1. Решеточная модель хаотического смешения двух жидкостей
Энтальпия смешения ЛЯ рассчитывается как разность энергий взаимодействия между молекулами двух типов. Полные энергии чистых индивидуальных компонентов равны
В знаменателе появляется «2», так как в расчете учитывается удвоенное число контактов.
Полная энергия смеси записывается как
где Nij—число пар //-типа в смеси. Ny — число контактов //-типа, тогда как Нй — число молекул /-го типа. Число /-^/-контактов равно произведению общего числа /-jc-пар и вероятности, что эта пара образует /-^'-контакт, а именно:
Таким образом, получаем:
Изменение внутренней энергии при смешении равно энергии смеси за вычетом энергии двух индивидуальных жидкостей:
В уравнении введена величина Aw, равная
Видно, что в уравнение входит только величина Днн, и результат в неявном виде зависит от параметров индивидуальных взаимодействий waa, wbb и wab- Изменение взаимодействий при смешении, очевидно, может быть как положительным, так и отрицательным. Знак изменения зависит от того, является ли взаимодействие АВ более положительным по сравнению с усредненными взаимодействиями А А и ВВ.
В решеточную модель не входит член, зависящий от давления и объема, поэтому изменение энтальпии можно записать как
Наконец, вводя параметр взаимодействия ч, определяемый согласно соотношению
найдем выражение для энтальпии смешения в расчете на один моль вещества:
где щ — число молей ъ-гп компонента. Теперь нужно получить выражение для важнейшей величины — свободной энергии смешения в расчете на моль вещества:
Из выражения для свободной энергии можно рассчитать целый ряд важных величин. Например, химический потенциал компонента А в смеси описывается выражением
Следует отметить, что уравнение, полученное очень простым способом, представляет выражение для химического потенциала неидеальной смеси. Последний член в нем — это интересующая нас избыточная величина:
Таким образом, химический потенциал компонента А в смеси записывается в следующем виде:
где ад — активность; а коэффициент активности компонента А можно определить следующим образом:
Исторически параметр ч сначала рассматривался как энтальпийная величина, как в уравнении. Позднее параметр ч был идентифицирован как величина свободной энергии, что подтверждается уравнением.
Биосфера и ее границы. Техносфера. Ноосфера.
Термин “биосфера” впервые был использован в 1875 г. Австрийским геологом Э. Зюссом. Под биосферой понимается вся совокупность всех живых организмов вместе со средой их обитания, в которую входят: вода, нижняя часть атмосферы и верхняя часть земной коры, населенная микроорганизмами.
Два главных компонента биосферы - живые организмы и ср ...
Аристотелевская система мира
Начиная с IV века до н. э. греческие мыслители строят геометрические модели мира, призванные объяснить движение небесных светил. Рождению новой космологической модели способствовал самый выдающийся ученый Древней Греции – Аристотель (384 – 322 гг. до н. э.). На основе достижений всей греческой науки он создал единую научную систему, сфо ...
Анатомическое строение корня однодольных растений
Корень, как и стебель, - радиально симметричный орган, характеризующийся апикальным ростом, осуществляемый деятельностью на его конце меристемы и участвующий в поглощении и транспорте веществ. У однодольных растений, а так же папоротников, плаунов и хвощей первичное строение корня сохраняется в течение всей жизни.Апикальная меристема кор ...